引用本文
  • 卢毅,顾宇重,杨青青,等.心力衰竭患者多次非计划性入院风险预测模型构建及验证[J].同济大学学报(医学版),2024,45(6):851-858.    [点击复制]
  • LU Yi,GU Yuchong,YANG Qingqing,et al.Construction and validation of a risk prediction model for multiple unplanned hospital admissions in patients with heart failure[J].Journal of Tongji University(Medical Science),2024,45(6):851-858.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 24次   下载 17 本文二维码信息
码上扫一扫!
心力衰竭患者多次非计划性入院风险预测模型构建及验证
卢毅,顾宇重,杨青青,梁梦瑶,刘建云
0
(南通市第六人民医院,上海大学附属南通医院心内科, 江苏 南通226000)
摘要:
目的探讨影响心力衰竭患者多次非计划性入院的危险因素,构建并验证多次非计划性入院的风险预测模型。 方法采用便利抽样法,选取2020年1月至2022年10月就诊于南通市第六人民医院心内科的498例心力衰竭患者,将其中2020年1月—2021年6月的332例心力衰竭住院患者的临床资料进行统计并分析多次非计划入院的危险因素,利用Logistic回归构建风险预测模型;选择2021年7月—2022年10月的166例患者数据,利用ROC曲线对模型进行验证。 结果332例心力衰竭住院患者中,发生多次非计划性入院的75例,发生率为22.59%。回归分析显示: 年龄>70岁,房颤史、慢性肾脏疾病、COPD、NYHA分级≥Ⅲ级、Hb<110g/L、服药≥7种是心力衰竭多次非计划性入院的影响因素。最终构建的预测模型的ROC曲线下面积为0.864(95%Cl: 0.802~0.925),灵敏度为90.8%,特异度为76.8%,最大Youden指数为0.676。 结论本研究构建的心力衰竭多次非计划性入院风险预测模型预测效果较好,可为临床医务人员识别高危患者并及时干预提供指导。
关键词:  心力衰竭  多次非计划性入院  危险因素  预测模型
DOI:10.12289/j.issn.2097-4345.24079
通信作者:
投稿时间:2024-02-27
录用日期:2024-04-28
基金项目:南通市卫生健康委员会面上项目(MSZ2022053)
Construction and validation of a risk prediction model for multiple unplanned hospital admissions in patients with heart failure
LU Yi,GU Yuchong,YANG Qingqing,LIANG Mengyao,LIU Jianyun
(Department of Cardiology, The Nantong Sixth People’s Hospital, Affiliated Nantong Hospital of Shanghai University, Nantong 226000, Jiangsu Province, China)
Abstract:
ObjectiveTo explore the risk factors of multiple unplanned admissions in patients with heart failure, and to construct and verify a risk prediction model. MethodsA total of 498 patients with heart failure who were admitted to the Department of Cardiology of Nantong Sixth People’s Hospital from January 2020 to October 2022 were selected by the convenient sampling method. The risk factors of multiple unplanned admissions were analyzed with logistic regression among 332 patients admitted from January 2020 to June 2021(training set), a risk prediction model was constructed. The prediction model was verified among 166 patients admitted from July 2021 to October 2022(validation set) with ROC curve. ResultsIn training set, 75 cases had multiple unplanned admission(22.59%). Logistic regression analysis showed that age >70 years, history of atrial fibrillation, chronic kidney disease, COPD, NYHA class ≥Ⅲ, Hb <110g/L, and polypharmacy were independent risk factors of multiple unplanned hospital admission for heart failure. The area under the ROC curve of the final prediction model was 0.864(95%CI: 0.802-0.925), the sensitivity was 90.8%, the specificity was 76.8%, and the maximum Youden index was 0.676. ConclusionThe risk prediction model of multiple unplanned admission for heart failure constructed in this study has a good prediction effect, which may be used to identify high-risk patients and to intervene in time.
Key words:  heart failure  multiple unplanned admissions  risk factors  prediction model

您是第5996059位访问者
网站版权 © 《同济大学学报(医学版)》编辑部
主管单位:教育部 主办单位:同济大学
地  址: 上海四平路1239号 邮编:200092 电话:021-65980705 E-mail: yxxb@tongji.edu.cn
本系统由北京勤云科技发展有限公司设计